Phiala Shanahan, MIT

Image Credit: 2018 EIC User's Group Meeting

Massachusetts
Institute of
Technology

Charge symmetry

180° rotation about the '2' axis in isospin space

$$P_{CS} = e^{i\pi T_2}$$

Partonic charge symmetry relations

$$u^{p}(x,Q^{2}) = d^{n}(x,Q^{2})$$
 $d^{p}(x,Q^{2}) = u^{n}(x,Q^{2})$ Analo
 $s^{p}(x,Q^{2}) = s^{n}(x,Q^{2})$ for an
 $c^{p}(x,Q^{2}) = c^{n}(x,Q^{2})$

Analogous for antiquark PDFs

Charge symmetry is not a symmetry of nature

$$m_u \neq m_d$$

Strong → quark masses

$$Q_u \neq Q_d$$

QED → photon radiation

Define "CSV" PDF combinations

$$\delta u(x) \equiv u^p(x) - d^n(x)$$

$$\delta u(x) \equiv u^p(x) - d^n(x)$$
 $\delta d(x) \equiv d^p(x) - u^n(x)$

Consider CSV in

Valence quark PDFs

$$u_{\rm v}(x) \equiv u(x) - \bar{u}(x)$$

$$d_{\rm v}(x) \equiv d(x) - \bar{d}(x)$$

Sea quark PDFs ↔ gluon PDF

$$\bar{u}(x)$$
 $\bar{d}(x)$

$$\delta g(x) = g^p(x) - g^n(x)$$

Implications of CSV at the EIC

(SI)DIS cross-sections at the EIC

Constraints on nucleon and nuclear PDFs

Disentangle contributions from

- CSV
- Heavy flavour
- Sea quarks
- Gluons
- Nuclear effects

Tests of the SM via precision measurements of electroweak parameters

CSV in DIS cross-sections

Drop assumption of CSV

chase through CSV terms in all structure functions

Neutral current interactions

e.g., for isoscalar target N_0

$$36F_1^{\gamma N_0}(x, Q^2) = 5[u^+(x) + d^+(x)] + 2s^+(x) + 8c^+(x) - 4\delta d^+(x) - \delta u^+(x).$$

$$\frac{d^{2}\sigma_{NC}^{L,R}}{dx\,dy} = \frac{4\pi\alpha^{2}s}{Q^{4}} \left(\left[xy^{2}F_{1}^{\gamma}(x,Q^{2}) \right] \right. \\
+ f_{1}(x,y)F_{2}^{\gamma}(x,Q^{2}) - \frac{Q^{2}}{(Q^{2}+M_{Z}^{2})} \frac{v_{\ell} \pm a_{\ell}}{2\sin\theta_{W}\cos\theta_{W}} \\
\times \left[xy^{2}F_{1}^{\gamma Z}(x,Q^{2}) + f_{1}(x,y)F_{2}^{\gamma Z}(x,Q^{2}) \right. \\
\pm f_{2}(y)xF_{3}^{\gamma Z}(x,Q^{2}) + \left(\frac{Q^{2}}{Q^{2}+M_{Z}^{2}} \right)^{2} \\
\times \frac{v_{\ell} \pm a_{\ell}}{2\sin\theta_{W}\cos\theta_{W}} \left[xy^{2}F_{1}^{Z}(x,Q^{2}) \right. \\
+ f_{1}(x,y)F_{2}^{Z}(x,Q^{2}) \pm f_{2}(y)xF_{3}^{Z}(x,Q^{2}) \right] \right).$$

Careful! Nuclear vs nucleon PDFs (even for deuteron)

CSV in DIS cross-sections

Drop assumption of CSV

chase through CSV terms in all structure functions

Charged current interactions

$$\frac{d^{2}\sigma_{CC}^{l^{+}(l^{-})}}{dx\,dy} = \frac{\pi s}{2} \left(\frac{\alpha}{2\sin^{2}\theta_{W}(M_{W}^{2} + Q^{2})} \right)^{2}$$

$$\times \left[xy^{2}F_{1}^{W^{\pm}}(x, Q^{2}) + f_{1}(y)F_{2}^{W^{\pm}}(x, Q^{2}) \right]$$

$$\mp f_{2}(y)xF_{3}^{W^{\pm}}(x, Q^{2}).$$

e.g., for isoscalar target N_0

$$2F_1^{W^+N_0}(x,Q^2) \to u^+(x) + d^+(x) + 2s(x) + 2\bar{c}(x) - \delta u(x) - \delta \bar{d}(x)$$

Note: CSV contributions aren't purely valance

How large is CSV in parton distribution functions?

How large is CSV in the parton distribution functions?

- Partonic CSV not directly resolved in experiment: bounds at few%-10%
 [Indirect evidence: global fits accommodate CSV]
- Theory and lattice QCD calculations suggest ~1% level in valence PDFs
 - Lattice QCD → lowest moments
 - Models: for moderate x (x >~0.1) $|\delta u_{\rm v}(x) + \delta d_{\rm v}(x)| << |\delta u_{\rm v}(x) \delta d_{\rm v}(x)|$
- Small, BUT could explain significant fraction of NuTEV anomaly

Young, PES, Thomas [arXiv:1312.4990]

NuTeV experiment

Indirect measure of Paschos-Wolfenstein ratio:

$$R_{\rm PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\bar{\nu} A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\bar{\nu} A}} \stackrel{\bigstar}{\to} \frac{1}{2} - \sin^2 \theta_W$$

This simplification \star relies on assumptions:

- Exact charge symmetry
- Vanishing partonic strangeness $s(x) \bar{s}(x)$
- Isoscalar nucleus with no nuclear effects
- No higher-twist effects

Implication CSV for NuTeV

Correction to the Paschos-Wolfenstein ratio from CSV

$$\Delta R_{\rm PW}^{\rm CSV} = \frac{1}{2} \left(1 - \frac{7}{3} \sin^2 \theta_W \right) \frac{\langle x \rangle_{\delta u^-} - \langle x \rangle_{\delta d^-}}{\langle x \rangle_{u^-} + \langle x \rangle_{d^-}}$$

Extensive literature discussing further corrections incl. Non-isoscalar nucleus, strangeness

- Bentz, Cloet, Londergan & Thomas PLB(2010)
- Davidson, Forte, Gambino, Rius, Strumia JHEP 02 (2002) 037
- Londergan, Thomas Phys.Lett.B 558 (2003) 132
- Gluck, Jimenez-Delgado, Reya Phys.Rev.Lett. 95 (2005) 022002
- Diener KP, Dittmaier, Hollik, Phys.Rev. D72:093002 (2005),
- Hirai, Kumano, Nagai, Phys.Rev. D71:113007 (2005)
- Brodsky, Schmidt, Yang, Phys.Rev. D70:116003 (2004)
- ...

Moments of PDFs

$$\langle x \rangle_q = \int x \, q(x) dx$$

Calculable in lattice QCD

CSV moments from lattice QCD

Indirect lattice QCD determination of first moment of CSV PDFs

[Shanahan, Thomas & Young, PRD(2013)094515]

• For small breaking in the u-d quark masses $m_{\delta} \equiv (m_d - m_u)$

$$\langle x \rangle_{\delta u} \simeq \frac{m_{\delta}}{2} \left[\left(-\frac{\partial \langle x \rangle_{u}^{p}}{\partial m_{u}} + \frac{\partial \langle x \rangle_{u}^{p}}{\partial m_{d}} \right) - \left(-\frac{\partial \langle x \rangle_{d}^{n}}{\partial m_{u}} + \frac{\partial \langle x \rangle_{d}^{n}}{\partial m_{d}} \right) \right]$$

Charge symmetry

$$\langle x \rangle_{\delta u} \simeq m_{\delta} \left[-\frac{\partial \langle x \rangle_{u}^{p}}{\partial m_{u}} + \frac{\partial \langle x \rangle_{u}^{p}}{\partial m_{d}} \right]$$

• SU(3) symmetry: fit isospin symmetric lattice results for hyperons (exploit use of non-physical quark masses in lattice QCD)

Determines CSV parameters in EFT

CSV moments from lattice QCD

Indirect lattice QCD determination of first moment of CSV PDFs

[Shanahan, Thomas & Young, PRD(2013)094515]

Our result $\langle x
angle_{\delta u}=-0.0023(7) \ \langle x
angle_{\delta d}=0.0017(4)$

This result + CSV from QED parton evolution

Shanahan, Thomas & Young, PRD(2013)094515

Constrain $\sin^2 \theta_W$ using parity-violating e-D scattering

$$\begin{split} A_{PV}^{eD}(x,y) &= \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1^d + f(y)a_3^d \right] \\ &= -\frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{9}{10} \left[\left(1 - \frac{20}{9}\sin^2\theta_W \right) + \left(1 - 4\sin^2\theta_W \right) \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right] \end{split}$$

Assumptions:

- CSV negligible
- Impulse approximation in scattering
- No higher-twist contributions
- Sea quarks negligible

Constrain $\sin^2 \theta_W$ using parity-violating e-D scattering

$$A_{PV}^{eD}(x,y) = \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1^d + f(y) a_3^d \right]$$

CSV terms contribute to both couplings

$$a_1^d \rightarrow a_1^{d(0)} + \delta^{(CSV)} a_1^d$$

$$a_3^d \to a_3^{d(0)} + \delta^{(CSV)} a_3^d$$

$$\frac{\delta^{(CSV)} a_1^d}{a_1^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_V^u + g_V^d}{2(2g_V^u - g_V^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

$$\frac{\delta^{(CSV)} a_3^d}{a_3^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_A^u + g_A^d}{2(2g_A^u - g_A^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

x-dependent CSV PDFs, not just moments

 Lattice QCD calculation was first moment only

Model x-dependence

Only first moment from lattice QCD calculation

Constrain simple parameterisation of x-dependence

[MRST Eur.Phys.J.C35,2004]

$$\delta_q(x) = \kappa_q x^{-1/2} (1 - x)^4 (x - 1/11)$$

Young, PES, Thomas [arXiv:1312.4990]

$Sin^2\theta_W$ at the EIC

Only first moment from lattice QCD calculation

Constrain simple parameterisation of x-dependence

[MRST Eur.Phys.J.C35,2004]

$$\delta_q(x) = \kappa_q x^{-1/2} (1 - x)^4 (x - 1/11)$$

Wang, Thomas, Young, PLB(2016)

CSV contribution to parity-violating asymmetry is at the **sub-percent level**

Lattice result

Caveats:

- Model form assumed, fit from one moment
- Lattice systematics ignored (no continuum, inf vol limit, no QED)
- Chiral extrapolation used

CSV in WNC couplings from e-D DIS

Note that CSV affects couplings a_1^d , a_3^d in the same way (x-dep)

$$\frac{\delta^{(CSV)} a_1^d}{a_1^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_V^u + g_V^d}{2(2g_V^u - g_V^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}
\frac{\delta^{(CSV)} a_3^d}{a_3^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_A^u + g_A^d}{2(2g_A^u - g_A^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

Use this to distinguish CSV effects on WNC couplings from possible new physics signatures in couplings

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \Big[\bar{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \bar{u} \gamma_{\mu} u + C_{1d} \bar{d} \gamma_{\mu} d \right) + \bar{e} \gamma^{\mu} e \left(C_{2u} \bar{u} \gamma_{\mu} \gamma_5 u + C_{2d} \bar{d} \gamma_{\mu} \gamma_5 d \right) \Big]$$

$$a_1^d = \frac{6}{5} (2C_{1u} - C_{1d})[1 + (CSV) + (new) + (sea) + (TMC) + (HT)]$$

$$a_3^d = \frac{6}{5} (2C_{2u} - C_{2d})[1 + \dots]$$

CSV in WNC couplings from e-D DIS

Note that CSV affects couplings a_1^d , a_3^d in the same way (x-dep)

$$\frac{\delta^{(CSV)} a_1^d}{a_1^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_V^u + g_V^d}{2(2g_V^u - g_V^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}
\frac{\delta^{(CSV)} a_3^d}{a_3^{d(0)}} = \left[-\frac{3}{10} + \frac{2g_A^u + g_A^d}{2(2g_A^u - g_A^d)} \right] \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

$$a_1^d = \frac{6}{5} (2C_{1u} - C_{1d})[1 + (CSV) + (new) + (sea) + (TMC) + (HT)]$$

$$a_3^d = \frac{6}{5} (2C_{2u} - C_{2d})[1 + \dots]$$

Theory/ lattice QCD suggests
CSV contributions to the
couplings is
at the sub-percent level

How can we constrain CSV?

- Strongest upper limit by comparing F_2 in charged current reactions induced by neutrinos with F_2 for charged lepton DIS, on isoscalar targets
- Coupled knowledge of heavy quark PDFs and CSV
- Sea quark contributions suppressed at larger x, more sensitive to CSV

$$R_c(x) \equiv \frac{F_2^{\gamma N_0}(x) + x[s^+(x) + c^+(x)]/6}{5\overline{F}_2^{WN_0}(x)/18}$$

$$R_c(x) \approx 1 + \frac{3(\delta u^+(x) - \delta d^+(x))}{10\sum_j q_j^+(x)}.$$

- Neutral current structure function at EIC
- Charged current structure function at EIC with sufficiently high beam intensity?

Also: neutrino-nucleon DIS on heavy targets:

$$\Delta x F_3(x) = x F_3^{W^+}(x) - x F_3^{W^-}(x) ;$$

$$\Delta x F_3^{N_0}(x) \rightarrow x \left[2(s^+(x) - c^+(x)) + \delta d^+(x) - \delta u^+(x) \right].$$

 Role for EIC: precise nuclear correction factors

Semi-inclusive pion production

Lepton DIS on isoscalar nuclear targets

Yield of hadron h per scattering from nucleon N

$$\frac{1}{\sigma_N(x)} \frac{d\sigma_N^h(x,z)}{dz} = \frac{N^{Nh}(x,z)}{\sum_i e_i^2 q_i^N(x)}$$

$$R^{\Delta}(x,z) \equiv \frac{8\left(\frac{N^{D\pi^{-}}(x,z)}{1+4\Delta(z)} - \frac{N^{D\pi^{+}}(x,z)}{4+\Delta(z)}\right)}{N^{D\pi^{+}}(x,z) - N^{D\pi^{-}}(x,z)}$$

$$= C^{\Delta}(z) \left[R_{CS}(x) + R_{SV}(x,z)\right]$$
CSV
Sea-valence interference term, less important at large x

Requires that factorisation be valid to a few percent

$$R_{CS}(x) = \frac{4(\delta d_{\mathbf{v}}(x) - \delta u_{\mathbf{v}}(x))}{3(u_{\mathbf{v}}(x) + d_{\mathbf{v}}(x))}$$

- CSV terms substantial for x>0.4
- Determine CSV via measurement of x-dep of R for fixed z

Test of weak current relation

Compare charge-changing interactions from electron/positron scattering on isospin-0 nucleus

$$R_{W}(x) \equiv \frac{2\left(F_{2}^{W^{+}D}(x) - F_{2}^{W^{-}D}(x)\right)}{F_{2}^{W^{+}D}(x) + F_{2}^{W^{-}D}(x)}$$

$$\approx \frac{\delta d_{v}(x) - \delta u_{v}(x) + 2(s^{-}(x) - c^{-}(x))}{\sum_{j} q_{j}^{+}(x)}$$

$$\equiv R_{CSV}(x) + R_{S}(x) .$$

Theory calculations suggest

- Opposite sign $\delta d_v(x), \delta u_v(x)$ effects add in magnitude
- x-dep of CSV and strange is different (note strange must have node)

Sea quark CSV: sum rules

Expectation:

CSV in valence quark PDFs

CSV in **sea** quark PDFs

First moments of valence quark
 CSV vanish by quark normalisation conditions

$$\int_0^1 \, \delta u_{\rm v}(x) \, dx = \int_0^1 \, \delta d_{\rm v}(x) \, dx = 0$$

- Sum rules in moments isolate sea quark CSV
- Note: sea quark CSV
 ⇔ gluon CSV
 via evolution

e.g., Gottfried sum rule

CSV vs sea quark flavour asymmetry

$$S_{G} \equiv \int_{0}^{1} dx \frac{\left[F_{2}^{\ell p}(x) - F_{2}^{\ell n}(x)\right]}{x}$$

$$= \frac{1}{3} - \frac{2}{3} \int_{0}^{1} dx \left[\bar{d}^{p}(x) - \bar{u}^{p}(x)\right]$$

$$+ \frac{2}{9} \int_{0}^{1} dx \left[4\delta \bar{d}(x) + \delta \bar{u}(x)\right].$$

"pseudo-CSV" EMC effect

 Isovector EMC effect for nuclei with N≠Z

$$R_{N,Z}(x) = \frac{F_2^{(N,Z)}(x)}{F_2^{(d)}(x)}$$

 Isovector EMC has similar signature to CSV → "pseudo-CSV"

Full flavour dependence of EMC effects

$$R_{N,Z}^{(3)}(x) = \frac{u_{N,Z}(x) - d_{N,Z}(x)}{u_d(x) + d_d(x)}$$

- Challenging in experiment (eg MINERvA)
- Moments accesible in LQCD

Parton physics from Lattice QCD

Precision Era

Fully-controlled w/ few-percent errors within ~5y

- Static properties of nucleon incl. spin, flavour decomp.
- Mellin moments of PDFs, GPDs

Early Era

Fully-controlled w/ ~15-percent errors within ~5y

- Nuclear structure A<5
- Spin, flavour decomp.
 of EMC-type effects

Exploratory Era

First calculations, timeline for controlled calculations unclear

x-dependence of PDFs

Prospects for CSV from Lattice QCD

- State of the art lattice QCD calculations include QED and isospin breaking [M_n-M_p: Borsanyi *et al. Science* 347 (2015) 1452]
- On EIC timescale:

SPECULATIVE

EMC effects in Mellin moments

First investigation of EMC-type effects from LQCD: Nuclear effects in Mellin moments of PDFs

- Calculable from local operators
- BUT EMC effects in moments are very small

Classic EMC effect is defined in F_2 :

$$F_2(x,Q^2) = \sum_{q=u,d,s...} x \, e_q^2 \left[q(x,Q^2) + \overline{q}(x,Q^2) \right]$$
 Number density of partons of flavour q

EMC effects in Mellin moments

First investigation of EMC-type effects from LQCD: Nuclear effects in Mellin moments of PDFs

- Calculable from local operators
- BUT EMC effects in moments are very small

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

Few-percent determination of quark momentum fraction
 ~10% determination of strange quark contributions

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

Few-percent determination of quark momentum fraction
 ~10% determination of strange quark contributions

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

 Bounds on EMC effect in moments at ~few percent level, consistent with phenomenology

Ratio of quark momentum fraction in nucleus to nucleon

Matrix elements of the Energy-Momentum Tensor in light nuclei first QCD determination of momentum fraction of nuclei

 Bounds on EMC effect in moments at ~few percent level, consistent with phenomenology

Ratio of quark momentum fraction in nucleus to nucleon

Phiala Shanahan,

- First determination of all components of momentum decomposition of light nuclei
- Small mixing between quark and gluon EMT operators neglected
- Constraint on either quark or gluon EMC in this quantity implies constraint on the other from sum rules:

Work in progress at close-to-physical values of the quark masses

Implications of parton CSV at the EIC

(SI)DIS cross-sections at the EIC

Constraints on nucleon and nuclear PDFs

Disentangle contributions from

- CSV
- Heavy flavour
- Sea quarks
- Gluons
- Nuclear effects

Tests of the SM via precision measurements of electroweak parameters

Implications of parton CSV at the EIC

